Linear Orthogonality Preservers of Hilbert C∗-modules

نویسنده

  • CHI - KEUNG NG CHI - WAI LEUNG
چکیده

We show in this paper that the module structure and the orthogonality structure of a Hilbert C∗-module determine its inner product structure. Let A be a C∗-algebra, and E and F be Hilbert A-modules. Assume Φ : E → F is an A-module map satisfying 〈Φ(x),Φ(y)〉A = 0 whenever 〈x, y〉A = 0. Then Φ is automatically bounded. In case Φ is bijective, E is isomorphic to F . More precisely, let JE be the closed two-sided ideal of A generated by {〈x, y〉A : x, y ∈ E}. We show that there exists a unique central positive multiplier u ∈ M(JE)+ such that 〈Φ(x),Φ(y)〉A = u〈x, y〉A (x, y ∈ E). As a consequence, the induced map Φ0 : E → Φ(E) is adjointable, and Eu1/2 is isomorphic to Φ(E) as Hilbert A-modules.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linear Orthogonality Preservers of Hilbert Modules

We verify in this paper that the linearity and orthogonality structures of a (not necessarily local trivial) Hilbert bundle over a locally compact Hausdorff space Ω determine its unitary structure. In fact, as Hilbert bundles over Ω are exactly Hilbert C0(Ω)-modules, we have a more general set up. A C-linear map θ (not assumed to be bounded) between two Hilbert C∗-modules is said to be “orthogo...

متن کامل

Linear Orthogonality Preservers of Hilbert Bundles

A C-linear map θ (not necessarily bounded) between two Hilbert C-modules is said to be ‘orthogonality preserving’ if 〈θ(x), θ(y)〉 = 0 whenever 〈x, y〉 = 0. We prove that if θ is an orthogonality preserving map from a full Hilbert C0()-module E into another Hilbert C0()-module F that satisfies a weaker notion of C0()-linearity (called ‘localness’), then θ is bounded and there exists φ ∈ Cb()+...

متن کامل

Linear Orthogonality Preservers of Hilbert C∗-modules over C∗-algebras with Real Rank Zero

Let A be a C∗-algebra. Let E and F be Hilbert A-modules with E being full. Suppose that θ : E → F is a linear map preserving orthogonality, i.e., 〈θ(x), θ(y)〉 = 0 whenever 〈x, y〉 = 0. We show in this article that if, in addition, A has real rank zero, and θ is an A-module map (not assumed to be bounded), then there exists a central positive multiplier u ∈M(A) such that 〈θ(x), θ(y)〉 = u〈x, y〉 (x...

متن کامل

$C^{*}$-semi-inner product spaces

In this paper, we introduce a generalization of Hilbert $C^*$-modules which are pre-Finsler modules, namely, $C^{*}$-semi-inner product spaces. Some properties and results of such spaces are investigated, specially the orthogonality in these spaces will be considered. We then study bounded linear operators on $C^{*}$-semi-inner product spaces.

متن کامل

Linear Orthogonality Preservers of Standard Operator Algebras

In 2003, Araujo and Jarosz showed that every bijective linear map θ : A → B between unital standard operator algebras preserving zero products in two ways is a scalar multiple of an inner automorphism. Later in 2007, Zhao and Hou showed that similar results hold if both A,B are unital standard algebras on Hilbert spaces and θ preserves range or domain orthogonality. In particular, such maps are...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012